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NEURAL DYNAMICS IN EPILEPSY: A PARADIGM SHIFT
Amitabh Dube

Abstract The human brain and the human mind are two separate entities that have baffled and
mystified mankind since time immemorial. The human brain is the morphological or structural precept
of the central nervous system, and the human mind represents the working vignette of the structural
moiety in real-time mental phase space characterised by a specific stochastic trajectory sub-serving a
precept specific to a mental function. The dictum of designing and developing of automated algorithms
for EEG-based seizure detection and epilepsy diagnosis based on the quantitative parametric
representation of the qualitative or visual aspect of the markers still needs to evolve to enhance its
specificity and sensitivity. The exploration of nonlinear dynamics has led to the development of methods
that can measure and understand the complex behaviours associated with epileptic seizures. These
approaches are valuable because they can uncover information that traditional linear and spectral signal
analysis methods cannot, thereby enhancing the potential for identifying the pre-seizure state. This
capability could enable the use of devices designed to intervene before a seizure occurs, employing
physiological or pharmacological means to prevent it. The field of seizure prediction and prevention is
rapidly evolving, with a focus on how chaotic neural dynamics within nonlinear systems can offer new
insights into managing epilepsy. This research area seeks to delve deeper into the transition from non-
seizure to seizure states (interictal to ictal transitions) to improve our comprehension of how seizures
develop, potentially leading to more effective treatments for epilepsy.
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Introduction The Human Brain and the Human
Mind are two intertwined and interlinked
entities that have bemused and bewildered
mankind since times immemorial. The Human
Brain is the morphological or structural precept
of the Central Nervous System and the Human
Mind represents the working vignette of the
structural moiety in real-time mental phase
space characterised by a specific stochastic
trajectory sub-serving a precept specific to a
mental function. The Human Mind represents
the neuropsychophysiological precepts of
memory, higher mentation, and abstruse
thinking that are instrumental in shaping an
individual’s persona and psyche. Skarda and
Freeman's [1] research on odour recognition
revealed groundbreaking insights into how the
brain processes sensory and motor information.
They observed that EEG activity across different
regions of the cerebral cortex follows patterns
of nonlinear chaos, rather than being steady or
randomly disordered. This chaotic activity is
foundational to all neural processing, serving as
a regulated mechanism for generating orderly
yet random neural activity. This mechanism is
crucial for both recalling learned sensory

patterns and acquiring new ones. It highlights
chaos as an essential element in the brain's
ability to handle and interpret sensory
information  dynamically. The key to
understanding the “Functional Brain: The
Human Mind” as an interactive switching device
in real-time lies in the appreciation of dynamical
nonlinearity that profiles the behaviour of
neurones in an interactive pool mass. The
interacting and functional neurones in their
dedicated neuronal pool observe and adhere to
the tenets of chaos. Birbaumer et al [2] worked
on the ambit and depth of the human brain and
documented that nonlinear correlates of
electroencephalograph  (EEG) increase in
dimensions and evolve with higher neural
information processing. The neural dynamics
during the complex associative thinking process
etch a more evolved esplanade as compared to
that observed during simple
neuropsychophysiological processes that do not
mandate complex association. Likewise, Pijin et
al (1991) [3] worked on the electrical
complexity of EEG signals within select brain
areas and further documented that EEG signals
are a manifestation of random neuronal
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processing, generated as a consequence of the
non-linear dynamic system. Chatrian et al [4]
and Elbert et al [5] further documented the fact
EEG lead-pairs overlying the frontal lobe
generate EEG signals with more evolved
nonlinear chaotic neural dynamics during the
process of imagination of objects as compared
to that observed during the actual perception of
the object. However, in path-
neuropsychophysiological states of
schizophrenia and epilepsy, reduced chaos, and
less variable and more rigid neural dynamics
can be observed. The spatiotemporal patterns
of neocortical oscillations have documented
that behavioural information exists in spatial
quantal  patterns of activity in the
somatosensory and visual cortices [6]. The EEG,
or electroencephalogram, captures the
fluctuating electrical activity of the brain as a
time series of voltage measurements.
Traditional time series analysis techniques, such
as power analysis, linear orthogonal transforms,
and parametric linear modelling, often struggle
to identify the essential characteristics of EEG
data. These methods may mistakenly interpret
the complexity of EEG signals, which arise from
a self-driven (autonomous) nonlinear system, as
mere random noise [7]. Research into the EEG's
statistical nature has shown that it is influenced
by both temporal and spatial factors [8]. The
EEG exhibits features typical of nonlinear
dynamics, including limit cycles (observed in
alpha wave activity), bursting patterns during
light sleep, jump phenomena (sudden changes
in signal behaviour), amplitude-dependent
frequency changes (where smaller amplitudes
are associated with higher frequencies), and
frequency  harmonics, especially under
conditions like photic driving [9]. Numerous
studies have confirmed that the EEG signal is
inherently nonlinear, displaying both
deterministic and chaotic attributes, which
underscores the complexity and richness of
brain activity as captured through EEG [10],
[11], [12], [1]. lasemidis [13] introduced a
method for mapping the dynamic behaviour of

complex, multidimensional systems through the
creation of phase space portraits. In this
approach, every time-dependent variable of the
system is considered a vector in the phase
space, with each vector representing the
system's instantaneous state. These vectors are
plotted over time within the phase space to
illustrate the system's evolution. This
visualisation technique results in a graphic
representation where the system's trajectory is
confined to specific areas within the phase
space, known as “attractors”. The shape and
properties of these attractors offer insights into
the overall state and behaviour of the system,
providing a powerful tool for understanding its
dynamics. lasemidis and Sackellars [14] noted
that the geometric characteristics of a system's
phase portrait can be quantitatively described
by metrics that encapsulate the system's
dynamics. Specifically, the complexity of an
attractor within the phase space is quantified by
its dimension. An attractor with a larger
dimension  signifies greater  complexity,
presenting a more intricate pattern within the
phase space. This distinction emphasises the
difference between the embedding dimension,
which represents the overall phase space, and
the dimension of an attractor, which highlights
the complexity of the system's behaviour
captured within that space. Holden [15]
described chaotic attractor as the rapid
divergence of trajectories that start from points
close to each other in ictal conditions, where
the divergence occurs exponentially, indicating
a brief period of closeness before expanding.
This expansion gives rise to a complex, layered
structure within the attractor. To quantify the
level of chaos within an attractor, two key
measures are used: the Kolmogorov entropy
and the Lyapunov exponents. An attractor is
considered chaotic if it has a positive
Kolmogorov entropy or if at least one of its
Lyapunov  exponents is  positive. The
Kolmogorov entropy, also known as Sinai or
metric entropy, quantifies the uncertainty or
unpredictability about the system's future state
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based on its past states within the phase space.
On the other hand, the Lyapunov exponents
measure the rate at which trajectories either
converge or diverge in the phase space,
reflecting the dynamics of expansion and
folding in different local directions within the
attractor. [16], [17], [18] Bullock and Horridge
[19] worked on models that process
information using digital computers and have
conceptualised neurones as binary decision
elements, arranging them into networks to
perform straightforward Boolean operations.
This approach underscores the presence of
sensory and motor-specific information within
the spatial aspects of EEG activity in the central
nervous system, laying the foundational theory
for Brain-Computer Interface (BCl) technology.
BCls leverage the “coded” pathways of
peripheral sensory systems, known as "labelled
lines," to interpret brain signals. Such models
have successfully demonstrated their utility in
understanding the operations of peripheral
motor systems and certain areas of the central
nervous system. Through this framework,
researchers have been able to identify specific
neurones that act as “feature detectors” and
“command units”, further validating the model's
effectiveness in mapping and interpreting
neural activity.

Chaos “Chaos is aperiodic long-term behaviour
in a deterministic system that exhibits sensitive
dependence on initial conditions”. Chaos is
defined as “Stochastic behaviour in a
deterministic system”. Chaos is a seeming
lawless random behaviour ruled by a
deterministic system. Skarda and Freeman [1]
further defined chaos as “Pseudorandom
Noise”. 1t should be noted that chaotic
behaviour excludes fixed points as well as
periodic behaviour. A dynamic system is
considered stable when it can return to its
original state following a disturbance. If the
system's base state is constant and does not
oscillate, it is described as being in equilibrium.
Plotting the system's amplitude or energy levels

against each other on a graph yields a curve or
trajectory that concludes at a singular point as
the system reaches equilibrium. This particular
point can be arrived at from various initial
conditions after experiencing perturbations,
indicating its role as an "attractor." The range of
initial conditions that lead to this attractor
forms what is known as the attractor's 'basin’.
When the input of the system is manipulated to
fall within the basin of an attractor, the system's
dynamics are effectively dictated by that
attractor [30]. The model to understand central
associative functions postulates the following
[30]:

¢ There exists for some time during the interval
between the onsets of the stimulus and
response, some stimulus—specific information in
the respective cortex to serve as the basis for
the correct response.

¢ This information is then encoded in the form
of a space-time pattern of neural activity,
exemplifying the spatial-temporal phase space
of receptors and synaptic mechanisms, for each
stimulus.

¢ These patterns are then manifested, however
indirectly, in the electroencephalographic (EEG)
potentials recorded from the scalp. Some
postulated patterns have been identified [30].
The formation of new, unlearned percepts and
sensory—motor patterns can be conceptualised
and simulated neurophysiologically after
profiling and patterning of ongoing chaotic
neural electrical processes. The chaotic activity
essentially needs to be a deterministic system
that can generate new sensory—motor patterns
which control the environment in an ever—
changing dynamic way contingent upon slightly
differing initial conditions and consequences.
The chaotic systems exhibit strong dependence
on initial conditions and the ability to show self-
organisation and self-iteration, i.e., to evolve
towards ordered temporal and spatial patterns
[20]. Lorenz [21] discovered that such a simple-
looking deterministic system has extremely
erratic dynamics; over a wide range of
parameters, the solutions oscillate irregularly
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never exactly repeating but always remaining in
a bounded region of phase space. When
trajectories are plotted in three dimensions,
they settle onto a complicated set, known as
strange attraction. Unlike stable fixed points
and limit cycles, the strange attraction is not a
point or a curve or even a surface; it’s a fractal,
with fractional dimensions between 2 and 3.
The motion of the attraction exhibits sensitive
dependence on initial conditions exemplifying
the fact that two trajectories starting very close
together will rapidly diverge from each other,
and therefore have different futures. Lorenz
[21] explains how a random, non-linear
dynamical system with an implicate structured
premise  operates behind a  complex
phenomenon that is perceived by the human
mind.

The main features of Lorenz's proponent are as
[22], [23]:

1. Nonlinearity: Chaotic systems are essentially
nonlinear dynamic systems, but all nonlinear
dynamical systems are not chaotic.

2. Sensitivity to initial conditions: All chaotic
systems are sensitive to initial conditions with a
small perturbation in the system that may result
in catastrophic drastic change subsequently,
more popularly known as the butterfly effect.

3. Strange attractor: This is an important
predictable factor that influences the operation
of a chaotic system, with one or more hidden
rules or principles dominating the evolution of
the system in select specific tasks.

4. Non—periodic time path: The nonlinear qualia
of chaos predates and defines the essence of
the flow of time and space, with the system
evolving accordingly. There is a regular cycle
sequence that occurs in a nonlinear system at a
time when two same states are present in a
system and such cyclic variability can never be
prognosticated. Some  researchers have
proposed that there are three essential
ingredients of a chaotic system namely,
determinism, aperiodicity, and  sensitive
dependence on initial conditions [24]. Skarda
and Freeman [1] found that chaos allows the

neural cells to return to old already formed
neural cell assemblies or neural pools leading to
exhausting repetition of self-iteration. With
increasing competition between neural cell
assemblies, the phase space, in which a
corresponding EEG activity varies, becomes
multi—-dimensional and the available measure of
the chaotic complexity of the time-series events
of human EEG is known as its fractal dimension

[2].

Fractals The word fractal (irregular,
fragmented) is about an object in the space or
temporal fluctuations that possess a self-
iterative form that cannot be described in a
single absolute scale. Self-similarity and fractal
dimension are the most important features of
fractals. Self-similarity has recursive qualia
resembling the shape of the whole, even if cut
off from any part of the shape through constant
repetition. Fractal dimension value is usually a
non-integer fractional number; hence this
dimension is referred to as fractals helping in
the process of pattern — recognition [25].
Barabdsi [26] studied the dynamic phenomena
of fractal theory in the human body and nature
and observed that fractal dictum allows a
representative approximation of the
complexities in processes that are nonlinear and
lack linearity. It is interesting to note that fractal
structural behaviour seems to be a primal
physiological and structural feature of the
human body that can be appreciated across all
organ systems physiology like the bronchial
ramifications, vascular system architecture, and
neuronal system connectomes. The fractal
organisational ramifications allow organ system
physiology optimisation accommodating an
increased surface area in a minimal viable space
framework.

Dynamical Systems Creating a phase space
portrait is a recognised method for analysing
the dynamic  behaviour of complex,
multidimensional systems. In this approach,
every time-dependent variable of the system is
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considered a vector component within the
phase space, with each vector capturing a
snapshot of the system's state at a particular
moment [13]. By plotting these vectors in
sequence within the phase space, one can
visualise the progression of the system's state
over time. Often, this visualisation reveals that
the system's dynamics are confined to specific
areas within the phase space, known as
“attractors”. These attractors' geometric
characteristics offer valuable insights into the
overall behaviour and state of the system,
allowing for a deeper understanding of its
dynamics. The theory of dynamical systems is
concerned with the behaviour of the system
including classifying the types of trajectories
that can occur, determining their behaviour on
charging initial conditions, chaos, and effects of
charge of parameters on  trajectories
(bifurcations). The basic theory classifying the
trajectories into discrete structures, includes
fixed points, limit cycles, and the transient basis
of attraction stability complexity.

Analysis of Dynamical Systems The salience of
topological features of a dynamical system can
be reconstructed from a time series
measurement of a single variable, known as
state space reconstruction on the embedding of
the time series and the two available
approaches for reconstruction of state space
include time delay embedding (usually used in
EEG analysis) and spatial embedding. The
complexity of a dynamical system is measured
and quantified through the correlation
dimension that is related to the topological
dimension of attraction and assays the fractal
dimension of the attraction. The strength of
chaos and its degree of unpredictability is
measured by Lyapunov exponents, wherein the
motion of two attraction exhibits sensitive
dependence on the initial condition, with the
two trajectories starting very close together
diverge subsequently from each other as
described by Strogatz [28].

Wavelet Analysis Electroencephalographic
wave-frequency bands of delta, theta, alpha,

beta and gamma waveforms can further be
processed and digitally evaluated through
wavelet methodology of chaos for the detection
of seizures and epilepsy focus (or foci). The
complex nature of EEG waveforms,
characterised by their non-linear dynamics, can
be quantified using specific measures such as
the Correlation Dimension (CD) and the Largest
Lyapunov Exponent (LLE). The CD is a metric
that reflects the system's complexity, while the
LLE indicates the degree of chaotic behaviour
within the system. Employing a wavelet-based
approach allows for the isolation of variations in
the Correlation Dimension and Largest
Lyapunov Exponent within distinct sub-bands of
EEG signals [31]. It is observed that while there
may not be significant differences in the values
of the parameters obtained from the original
EEG, differences may be identified when the
parameters are employed in conjunction with
specific EEG sub—bands. Moreover, it has been
observed that the CD wavelet variable has a
high index of sensitivity and specificity for
seizure detection in the high-frequency
waveform sub-bands of beta and gamma and
the LLE wavelet variable categorises epileptic
(neuronal avalanche cascade) focus (or foci) in
the lower frequency waveform sub-bands of
alpha [31].

EEG and Chaos The EEG, time-series, has been
conceptualised as a series of numerical values
(voltages) recorded across time. Traditional time
series analysis techniques, such as power
analysis, linear orthogonal transforms, and
parametric linear modelling, often fall short of
accurately identifying the nuances of time series
data produced by autonomous nonlinear
systems, which operate without external inputs.
These conventional methods may inaccurately
characterise the majority of the data as random
and insignificant noise [7]. However, in recent
years, advanced methods designed for the
dynamic analysis of complex time series have
been increasingly applied to study signals from
biological systems, including the
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electroencephalogram (EEG). These newer
approaches are better equipped to uncover the
intricate patterns and meaningful information
hidden within the seemingly chaotic data of
biological signals. The statistical properties of
the EEG, nonlinear signals, spread across the
coordinates of both time and space [8] and are
nonlinear, deterministic and chaotic [1 and 12].
The qualia of the EEG, namely the existence of
limit cycles (a activity), instances of bursting
behaviour (during light sleep), jump phenomena
(hysteresis), amplitude-dependent frequencies
(the smaller the amplitude, the higher the EEG
frequency), and frequency harmonics (e.g.,
under photic driving conditions), are among the
long catalogue of characteristic designate
essence of nonlinear systems [9]. The
characteristic dynamical features of EEG time
series corresponding to specific states, such as
mental tasks, sleep, dementia, and coma have
also been profiled by respective studies [5].

Epilepsy Epilepsy is a chronic disorder of the
brain that affects 2% of people worldwide
which is characterised by a burst of neuronal
avalanche cascade that is recurrent. The
seizures may be brief episodes of involuntary
movements of hands and feet that may involve
a select area of the brain (known as partial
seizures) or the entire cerebral hemisphere
(known as generalised seizures) and are
sometimes  accompanied by loss of
consciousness [32]. Epilepsy was redefined
conceptually in 2005, as a disorder of the brain
system characterised by an enduring
predisposition to generate an incessant burst of
neural activity termed the neuronal avalanche
or seizures [33]. The International League
Against Epilepsy [34] accepted the practical
definition for special circumstances that do not
meet the two unprovoked seizure criteria in the
task force. “The task force proposed that
epilepsy be considered to be a disease of the
brain defined by any of the following
conditions: (1) At least two unprovoked (or
reflex) seizures occurring >24 h apart; (2) one

unprovoked (or reflex) seizure and a probability
of further seizures similar to the general
recurrence risk (at least 60%) after two
unprovoked seizures, occurring over the next 10
years; (3) diagnosis of an epilepsy syndrome”.

Epilepsy and Chaos Dynamical analysis of EEG
recordings from patients with epilepsy has
provided novel perspectives  regarding
epileptogenesis, documenting the fact that
epileptic seizure activity can be patterned and
profiled with a high degree of sensitivity and
specificity making use of nonlinear chaotic
dynamical systems. Babloyanz and Destexhe
[35], perhaps for the first time, could categorise
and assign the EEG signals specific to epilepsy
with a high degree of sensitivity making use of
the principles of nonlinear chaotic dynamics.
Research into partial seizures, particularly those
originating in the temporal lobe, has revealed
the existence of limit cycles—a feature typical
of nonlinear systems— within the seizure
discharges captured by subdural electrodes
placed over the epileptogenic focus. These
findings underscore the presence of chaotic
attractors in seizure activity, which are often
characterised by a fractal dimension and the
presence of at least one positive Lyapunov
exponent, indicating a system's sensitivity to
initial conditions and chaotic behaviour. Further
evidence supporting the nonlinear chaotic
dynamics in EEG signals comes from studies,
including work by Frank et al. [37], which
observed such dynamics in patients with mixed
generalised seizures. Collectively, these studies
support the conclusion that epileptic seizures
arise from deterministic nonlinear chaotic
systems. This suggests that the manifestation of
epileptic  seizures could be viewed as
intermittent phase transitions, a hallmark of the
behaviour of such complex systems [9].
lasemidis and Sackellers [14] observed that the
chaoticity of the signal is highest during the
postictal state, lowest in seizure discharge and
intermediate in the pre-ictal state. The onset of
a seizure represents the spatiotemporal

Int J Basic Appl Physiol., 13(1), 2024

Page 6



Review Article

International Journal of Basic and Applied Physiology

transition from a complex to a less complex
state. Birbaumer et al 1995[2] concluded that
the feedback of cortical negativity and positivity
during seizure trained to develop higher
variability of brain processes and learned to
become flexible modification of that situation
before the patient reaches any dangerous
rigidity. lasemidis et al [13], [38], [39], [40]
stated that dynamical changes in EEG preceded
the seizure activity several minutes before
seizure onset in which large areas of the cortex
are dynamically entrained. During the pre-ictal
phase, the dynamical characteristics of EEG
signals from the epileptogenic hippocampus
show notable differences compared to those
from the contralateral (opposite side)
hippocampus, which behaves more typically.
Specifically, the epileptogenic hippocampus [40]
displays patterns of behaviour that are more
ordered and exhibit less complexity both inter-
ictally (between seizures) and pre-ictally (before
seizures) than its contralateral counterpart. This
observation was further supported by lasemidis
and Sackellares [14], who identified that, in the
period leading up to a seizure, the dynamical
state of the epileptogenic hippocampus is
significantly distinct from the state of the
contralateral hippocampus, which does not
exhibit epileptogenic activity. This distinction
underscores the unique dynamical properties of
the epileptogenic regions in the brain, offering
potential avenues for targeted intervention and
monitoring in epilepsy management. lasemidis
and Sackellares [14] described that “epileptic
brains repeatedly make abrupt transitions into
and out of the ictal state as the epileptogenic
focus drives them into self-organising phase
transitions from chaos to order as evinced by
the observations of 1) positive Lyapunov
exponent in EEG signal (2) nonlinearities in
interictal EEG generated by the epileptogenic
focus, (3) existence of a spatiotemporal
transition in EEG dynamics (from chaos to order,
drop in Lmax values at electrode sites)
preceding seizures by minutes to hours to days
and (4) resetting of spatiotemporal dynamics by

the seizure (from order to chaos), leading to the
more  favourable  interictal  condition”.
Consequently, scalp EEG is being extensively
used in many fields of neuroscience including
neurology, pathology, sleep medicine and
neuroscience research and has been proven to
be an important diagnostic tool observed by
Schroder [41].

Conclusion The advancement in understanding
the dynamics of epileptic seizures has been
significantly propelled by the development of
complex nonlinear dynamics and quantitative
measures. These methods are particularly
advantageous as they do not rely on predefined
models of brain function, either normal or
epileptic. They are capable of uncovering
information that traditional linear and spectral
signal analysis methods cannot access. Recent
applications of these sophisticated
mathematical techniques have consistently
supported the notion that the EEG is produced
through mechanisms that adhere to nonlinear
deterministic  principles, with compelling
evidence pointing towards chaotic processes.
Delving deeper into these nonlinear dynamical
processes is crucial for the eventual creation of
realistic mathematical models of epileptogenic
brain function. Such models could provide
insights into the episodic nature of epileptic
seizures. The ability to distinguish between the
signal dynamics of epileptogenic and non-
epileptogenic regions, especially during the
interictal (between seizures) phase, presents a
significant opportunity for improving the
localisation of seizure origins. Traditionally,
clinicians depend on recordings during seizures
(ictal recordings) for diagnostic evaluations and
to precisely determine the seizure onset zone
before surgery. This often requires extended
recording periods to capture enough seizure
events. However, identifying the unique
interictal dynamical properties of the seizure
focus through EEG could dramatically shorten
the time needed for diagnostic and pre-surgical
evaluations, leading to more accurate
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localisation of the epileptogenic focus. The
observation that the evolution of a seizure
encompasses not merely the binary states of
interictal (between seizures) and ictal (during a
seizure) phases but includes a distinct pre-ictal
phase, which dynamically diverges from the
other two, presents significant insights for both
research and clinical practice. This nuanced
understanding underscores the complexity of
seizure dynamics and opens up new avenues for
exploring the underlying mechanisms that
trigger seizures at specific times and locations.
The potential to identify the pre-ictal state
through advanced monitoring could
revolutionise epilepsy management, enabling
preemptive actions to avert seizures before
they fully manifest. The prospect of utilising
implanted devices for the real-time detection of
the pre-ictal state introduces a promising
strategy for seizure intervention. Such devices,
equipped to deliver timely physiological or
pharmacological interventions, could
significantly mitigate the impact of epilepsy on
individuals' lives by preventing seizures from
occurring. This approach exemplifies the
concept of controlling chaos, a burgeoning area
of research that seeks to apply principles of
chaos theory for practical interventions in
complex systems. The ability to control or
influence chaotic systems, such as the
neurological dynamics leading to seizures, holds
great promise for improving patient outcomes
and enhancing our understanding of brain
functions [42]. Schiff et al [43] have shown
through their research on hippocampal slices
that it's possible to manage epileptic seizures by
influencing the chaotic dynamics characteristic
of these conditions. Their experiments reveal
that applying electrical stimuli at specific
intervals can significantly alter the course of
these dynamics, offering a promising method
for seizure control. This work highlights the
effectiveness of targeted, low-voltage electrical
interventions in modulating the complex
behaviour of epileptic seizures, illustrating a
novel approach to managing these episodes.

The foundational assumptions underpinning
this research include the premise that the
electrical  activity originating from the
epileptogenic hippocampus exhibits unique
dynamical properties compared to those from
analogous, non-affected areas (such as the
contralateral hippocampus). Furthermore, it is
hypothesised that these variations hold
predictive markers for forthcoming epileptic
episodes and that through the application of
nonlinear dynamics methodologies, these signal
attributes can be effectively measured and
analysed. A reasonable model, based on studies
to date, is that: 1. The epileptogenic
hippocampus, due to alterations in its neuronal
composition and disruptions in  neural
connectivity, becomes prone to spontaneous
shifts towards more structured states. These
transitions are indicative of the brain's
predisposition to epilepsy, and 2. The
involvement of the epileptogenic hippocampus
in initiating or contributing to seizure activity is
contingent upon the long-term (spanning
several minutes) spatiotemporal
synchronisation of a critical volume and/or the
wave dynamics involving interconnected areas
of the temporal and frontal lobes. The above is
an attempt to appreciate the working of the
Functional Human Brain/Human Mind in the
disease process of epilepsy wherein it has been
proposed on documentary evidence that the
Human Mind idles in a state of Chaos through a
phase — space of stochastic trajectory vide
varied dedicated neuronal pools and sub serves
and responds to space—time—locked stimulus
across the framework and mould so evolved
with the neurophysiological phenomenon of
memory. However, the disease process of
epilepsy tends to dampen the non-linear
chaotic oscillations essential for the working of
the Human Mind!
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